Глава 4

Предел функции

В этой главе основное внимание уделено понятию предела функции. Определено, что такое предел функции в бесконечности, а затем предел в точке, пределы справа и слева. Во второй части изучаются классические для теории пределов теоремы о бесконечно малых и бесконечно больших величинах. Третья часть посвящена теореме о единственности предела, теоремам о пределах суммы, произведения и частного двух функций. Теоремы о пределах обычно крайне полезны при решении задач. В четвертой части изучаются первый и второй замечательный пределы.

4-1 Понятие предела функции

Выберем произвольную функцию и попытаемся понять, куда стремится значение функции, если значение аргумента стремится к определенному числу. Рассмотрим, например, функцию:

$$y = \frac{5x^2 + 3}{3x + 1}$$

Если $x \to 1$, то мы можем подставить это значение в выражение для функции и найти ее значение:

если
$$x \to 1$$
, то $y \to \frac{5 \cdot 1^2 + 3}{3 \cdot 1 + 1} = 3$

Сделаем вывод, что предел рассматриваемой функции при x, стремящемся к 1, равен 3. Очевидно, что в такой ситуации нашего интуитивного представления о пределе функции вполне достаточно для нахождения предела и более формализованного определения не требуется.

Если рассмотреть более сложную ситуацию, когда, скажем, рассматривается функция:

$$y = \frac{5x^2 - 5}{3x - 3}$$

нахождение предела подстановкой в выражение функции значения аргумента x=1 приведет нас к неопределенности вида: $\frac{0}{0}$:

$$y = \frac{5 \cdot 1^2 - 5}{3 \cdot 1 - 3} = \frac{0}{0}$$

Это приводит к необходимости рассматривать строгое формализованное определение предела функции.

Предел функции в бесконечности

Число A называется пределом функции y = f(x) при x стремящемся κ бесконечности, если для любого, даже сколь угодно малого положительного ϵ , найдется такое число M (зависящее от ϵ), что для всех x таких, что |x| > M, выполнено неравенство: $|f(x) - A| < \epsilon$.

Число A называется **пределом функции** y = f(x) **при** $x \to \infty$, если для любого, даже сколь угодно малого положительного ε , найдется такое число M (зависящее от ε), что для всех x, по абсолютной величине больших M, выполнено неравенство: $|f(x) - A| < \varepsilon$.

На языке кванторов определение предела функции в бесконечности запишется следующим образом:

$$A = \lim_{x \to \infty} f(x)$$
, если $\forall \varepsilon > 0 \;\; \exists M \colon \, \forall |x| > M \;\; |f(x) - A| < arepsilon$

Предел функции в точке

Число A называется пределом функции y = f(x) при $x \to a$, если для любого, даже сколь угодно малого положительного для любого, даже сколь угодно малого $\varepsilon > 0$, найдется такое число $\delta > 0$ (зависящее от ε), что для всех x из δ -окрестности точки a, выполнено неравенство: $|f(x) - A| < \varepsilon$.

Это определение называется определением на языке ϵ и δ , предложено французским математиком Огюстеном Коши и используется с начала XIX века по настоящее время, поскольку обладает необходимой математической строгостью и точностью.

Огюстен Луи (Cauchy, 1789-1857)

4-1 ПОНЯТИЕ ПРЕДЕЛА ФУНКЦИИ

Французский математик. Член Парижской АН (1816). Окончил
Политехническую школу (1807) и Школу мостов и дорог (1810) в Париже. В 1810-13 работал инженером в Шербуре. В 1816-30 преподавал в Политехнической школе и Коллеж де Франс. С 1848 в Парижском университете и в Коллеж де Франс. Работы Коши относятся к различным областям математики и математической физики. Его курсы анализа ("Курсанализа", 1821, "Резюме лекций по исчислению бесконечно малых", 1823, анализа", 1821, "Резюме лекций по исчислению бесконечно малых", 1823, "Лекции по приложениям анализа к геометрии", т. 1-2, 1826-28), основанные на систематическом использовании понятия предела, послужили образцом для большинства курсов позднейшего времени. В них он дал определение понятия непрерывности функции, чёткое построение теории сходящихся рядов, определение интеграла как предела сумм.

Источник: Проект Рубрикон.

Запишем на языке кванторов определение предела функции в точке:

$$A = \lim_{x \to a} f(x),$$

если
$$\forall \varepsilon > 0 \,\exists\, \delta(\varepsilon) > 0 \colon 0 < |x - a| < \delta \Rightarrow |f(x) - A| < \varepsilon$$

Пример 4-1. Предел функции в точке. Доказать, что:

$$\lim_{x\to 1}(3x+1)=4$$

Воспользуемся определением предела. Необходимо, чтобы выполнялось неравенство:

$$|(3x+1)-4|<\varepsilon$$

Оно эквивалентно неравенству:

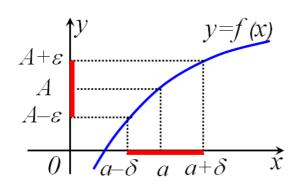
$$|x-1| < \frac{\varepsilon}{3}$$

Таким образом, для любого $\varepsilon > 0$ можно взять $\delta = \varepsilon/3$, тогда для всех значений аргумента, для которых выполняется неравенство $|x-1| < \delta$, будет справедливо:

$$|(3x+1)-4| = |3(x-1)| < \varepsilon$$

Это означает в свою очередь, что:

$$\lim_{x \to 1} (3x + 1) = 4$$



$$\lim_{x \to a} f(x) = A$$

$$a - \delta < x < a + \delta$$

$$A - \varepsilon < f(x) < A + \varepsilon$$

Рисунок 4-1. Геометрический смысл предела функции.

Геометрический смысл предела функции в точке

Выясним, в чем заключается геометрический смысл предела функции в точке. Построим график функции y = f(x) и отметим на нем точки x = a и y = A.

Предел функции y = f(x) в точке $x \to a$ существует и равен A, если для любой ε -окрестности точки A можно указать такую δ -окрестность точки a, что для любого x из этой δ -окрестности значение f(x) будет находиться в ε -окрестности точки A.

Отметим, что по определению предела функции в точке для существования предела при $x \to a$ не важно, какое значение принимает функция в самой точке a. Можно привести примеры, когда функция не определена при x=a или принимает значение, отличное от A. Тем не менее, предел может быть равен A.

Односторонние пределы

Кроме определения обычного предела функции в точке возможно также дать определение понятия *одностороннего предела*: определить, что представляет собой предел справа и предел слева.

Пределом функции f(x) в точке x = a слева называется предел, вычисляемый в предположении, что $x \to a$, оставаясь все время меньше значения a. Аналогично, пределом справа называется предел функции f(x) при $x \to a$, при том, что x > a. Односторонние пределы обозначаются так:

$$\lim_{x \to a-0} f(x)$$
и $\lim_{x \to a+0} f(x)$

4-2 Бесконечно малые и бесконечно большие

Особое место при изучении пределов функций и доказательству теорем относительно их свойств отводится такому важному понятию как бесконечно малые и бесконечно большие величины.

Бесконечно малая величина

Функция $y = \alpha(x)$ называется бесконечно малой величиной при $x \to a$ (или при $x \to \infty$), если ее предел равен нулю.

Бесконечно малой величиной называется функция, предел которой равен нулю.

Запишем определение бесконечно малой на языке кванторов:

$$\lim_{x\to a}\alpha(x)=0,$$

если
$$\forall \varepsilon > 0 \,\,\exists\,\, \delta(\varepsilon) > 0 \colon 0 < |x - a| < \delta \, \Rightarrow |\alpha(x)| < \varepsilon$$

Пример 4-2. Бесконечно малая величина. Следующая функция является бесконечно малой при $x \to 3$:

$$f(x) = x - 3$$

Это следует из того, что значения функции уменьшаются при приближении аргумента к значению 3 и предел этой функции в точке 3 равен нулю. Отметим, что при других значениях аргумента эта функция бесконечно малой не является.

Связь бесконечно малой с пределом функции

Теорема 4-1. Если функция f(x) при $x \to a$ имеет предел, равный A, то ее можно представить в виде суммы предела A и бесконечно малой $\alpha(x)$ при $x \to a$:

$$f(x) = A + \alpha(x)$$

Доказательство. По определению предела функции f(x) при $x \to a$:

$$\forall \varepsilon > 0 \ \exists \ \delta(\varepsilon) > 0 : 0 < |x - a| < \delta \Rightarrow |f(x) - A| < \varepsilon$$

Это означает, что разность f(x) - A есть бесконечно малая величина, которую мы можем обозначить $\alpha(x)$. Отсюда:

$$f(x) - A = \alpha(x) \Rightarrow f(x) = A + \alpha(x)$$

Легко доказать, что обратное утверждение тоже верно. Если функция может быть представлена в окрестности некоторой точки как сумма некоего числа A и бесконечно малой, тогда предел этой функции в этой точке равен числу A.

В целом, если предел некоторой функции f(x) равен A, это означает, что величина (f(x) - A) есть бесконечно малая.

Свойства бесконечно малых

Теорема 4-2 (сумма бесконечно малых величин). Если функции $\alpha(x)$ и $\beta(x)$ являются бесконечно малыми, то их сумма $\alpha(x) + \beta(x)$ - бесконечно малая.

Доказательство. Пусть ε - произвольное положительное число. Так как функции $\alpha(x)$ и $\beta(x)$ бесконечно малые, то найдутся такие числа δ_1 и δ_2 , что при $0 < |x - a| < \delta_1$ и $0 < |x - a| < \delta_2$ имеют место неравенства:

$$|\alpha(x)| < \frac{\varepsilon}{2}$$

$$|\beta(x)| < \frac{\varepsilon}{2}$$

Обозначим через δ наименьшее из двух чисел δ_1 и δ_2 . Тогда при $0<|x-a|<\delta$ будет выполнено:

$$|\alpha(x) + \beta(x)| \le |\alpha(x)| + |\beta(x)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

Этим доказано, что для любого $\varepsilon > 0$ существует такое число $\delta > 0$, что при $0 < |x - \alpha| < \delta$ выполнено неравенство: $|\alpha(x) + \beta(x)| < \varepsilon$, сумма бесконечно малых есть бесконечно малая.

Следствием теоремы является ее распространение на случай алгебраической суммы любого конечного числа бесконечно малых.

Теорема 4-3 (произведение бесконечно малой величины на ограниченную величину). Произведение бесконечно малой величины на ограниченную величину есть бесконечно малая величина.

Доказательство. Пусть f(x) – ограниченная при $x \to a$ функция, а $\alpha(x)$ бесконечно малая. Тогда существует такое число M > 0, что $|f(x)| \le M$

для всех x, достаточно близких к a. Для $\varepsilon > 0$ существует $\delta > 0$, что при условии $0 < |x - a| < \delta$ одновременно выполняются неравенства:

$$|f(x)| \le M$$

$$|\alpha(x)| < \frac{\varepsilon}{M}$$

Составим произведение:

$$|f(x) \cdot \alpha(x)| = |f(x)| \cdot |\alpha(x)| < M \cdot \frac{\varepsilon}{M} = \varepsilon$$

Этим доказано, что произведение бесконечно малой на ограниченную величину есть бесконечно малая. Две следующие теоремы являются прямым следствием этого утверждения.

Теорема 4-4 (произведение бесконечно малой на постоянную величину). Произведение бесконечно малой на постоянную величину есть бесконечно малая величина.

Теорема 4-5 (произведение двух бесконечно малых величин). Произведение двух бесконечно малых величин есть бесконечно малая величина.

Поскольку постоянная величина и бесконечно малая величина являются ограниченными, то их произведение с бесконечно малой величиной также является бесконечно малой величиной.

Теорема 4-6 (частное от деления бесконечно малой величины на переменную, имеющую предел). Частное от деления бесконечно малой величины на переменную величину, стремящуюся к пределу, не равному нулю, есть бесконечно малая величина.

Бесконечно большая величина

Функция y = f(x) называется *бесконечно большой величиной* при $x \to a$ (или при $x \to \infty$), если для любого, даже сколь угодно большого числа M > 0 найдется δ (зависящее от M), что для всех x таких, что $0 < |x - a| < \delta$, выполнено неравенство: |f(x)| > M. Бесконечно большая величина больше любого наперед взятого большого числа.

Бесконечно большой величиной называется переменная величина, абсолютное значение которой неограниченно возрастает.

Пример 4-3. Бесконечно большая величина. Следующая функция является бесконечно большой при $x \to 2$:

$$\alpha(x) = \frac{3}{x - 2}$$

Это следует из того, что значения функции неограниченно возрастают при приближении аргумента к значению 2.

Пишут обычно:

$$\lim_{x \to a} f(x) = \infty$$

Можно заметить также, что односторонние пределы не равны:

$$\lim_{x\to 2-0}\frac{3}{x-2}=-\infty$$

$$\lim_{x\to 2+0}\frac{3}{x-2}=+\infty$$

Поэтому можно записать также:

$$\lim_{x \to 2} \frac{3}{x - 2} = \pm \infty$$

Связь бесконечно малых с бесконечно большими величинами

Теорема 4-7 (связь между бесконечно малыми и бесконечно большими величинами).

- (1) Если α (x) бесконечно малая, то $\frac{1}{\alpha(x)}$ бесконечно большая.
- (2) Если $\beta(x)$ бесконечно большая, то $\frac{1}{\beta(x)}$ бесконечно малая.

Доказательство. (1) Выберем M > 0 и обозначим $\frac{1}{M} = \varepsilon$. Так как $\alpha(x)$ бесконечно малая, то числу $\varepsilon > 0$ соответствует $\delta > 0$ такое, что при $0 < |x - a| < \delta$ выполняется неравенство:

$$|\alpha(x)| < \varepsilon = \frac{1}{M}$$

Следовательно,

$$\frac{1}{|\alpha(x)|} > M$$

Эта величина является бесконечно большой.

(2) Выберем $\varepsilon > 0$ и обозначим $\frac{1}{\varepsilon} = M$. Так как $\beta(x)$ бесконечно большая, то числу M соответствует $\delta > 0$, такое, что при $0 < |x - a| < \delta$ выполняется неравенство:

$$|\beta(x)| > M = \frac{1}{\varepsilon}$$

Следовательно,

$$\frac{1}{|\beta(x)|} < \varepsilon$$

Эта величина является бесконечно большой.

Пример 4-4. Бесконечно малые и бесконечно большие. Функция $f(x) = x^2 - 1$ является бесконечно малой при $x \to 1$, и при этом бесконечно большой является функция:

$$f(x) = \frac{1}{x^2 - 1}$$

Сравнение бесконечно малых величин

Пусть $\alpha(x)$ и $\beta(x)$ - бесконечно малые при $x \to a$. Если разделить одну бесконечно малую на другую, их частное может и не быть бесконечно малой. Например, если $\alpha(x) = 3x$ и $\beta(x) = x$, то

$$\lim_{x \to 0} \frac{\alpha(x)}{\beta(x)} = \lim_{x \to 0} \frac{3x}{x} = 3$$

Говорят, что предел отношения двух бесконечно малых есть $neonpedenehhocmь muna <math>\frac{0}{0}$. В зависимости от того, какие бесконечно малые рассматриваются, этот предел может быть равен нулю, любому действительному числу или бесконечности. Например:

$$\lim_{x \to 0} \frac{2x^2}{x^2} = 2$$

$$\lim_{x \to 0} \frac{3x^2}{x} = 0$$

$$\lim_{x \to 0} \frac{3x}{x^2} = \infty$$

Если отношение $\frac{\alpha(x)}{\beta(x)}$ двух бесконечно малых величин само бесконечно мало, то $\alpha(x)$ называют величиной более высокого порядка малости, чем $\beta(x)$, а $\beta(x)$ называют величиной более низкого порядка малости, чем $\alpha(x)$.

Если отношение $\frac{\alpha(x)}{\beta(x)}$ двух бесконечно малых величин стремится к конечному пределу, не равному нулю, то $\alpha(x)$ и $\beta(x)$ называются бесконечно малыми одного порядка малости.

Если отношение $\frac{\alpha(x)}{\beta(x)}$ двух бесконечно малых величин стремится единице, то $\alpha(x)$ и $\beta(x)$ называют эквивалентными и пишут: $\alpha(x) \sim \beta(x)$.

Бесконечно малая величина $\alpha(x)$ имеет **более высокий порядок малости** по сравнению с $\beta(x)$, если $\frac{\alpha(x)}{\beta(x)}$ есть бесконечно малая величина.

Бесконечно малые величины $\alpha(x)$ и $\beta(x)$ имеют **одинаковый порядок малости**, если отношение $\frac{\alpha(x)}{\beta(x)}$ имеет конечный предел, не равный нулю.

Бесконечно малые величины $\alpha(x)$ и $\beta(x)$ эквивалентны, если предел отношения $\frac{\alpha(x)}{\beta(x)}$ равен единице.

Эквивалентность некоторых важных бесконечно малых величин доказана и используется для вычисления пределов функций. В частности, эквивалентными являются следующие бесконечно малые:

$$\sin \alpha(x) \sim \alpha(x)$$

$$\operatorname{tg} \alpha(x) \sim \alpha(x)$$

$$\ln(1 + \alpha(x)) \sim \alpha(x)$$

$$1 - \cos \alpha(x) \sim \frac{(\alpha(x))^2}{2}$$

$$\operatorname{arcsin} \alpha(x) \sim \alpha(x)$$

$$\operatorname{arctg} \alpha(x) \sim \alpha(x)$$

$$\alpha^{\alpha(x)} - 1 \sim \alpha(x) \cdot \ln \alpha$$

$$(1 + \alpha(x))^p - 1 \sim p \cdot \alpha(x)$$

Этот перечень принято называть таблицей эквивалентности для бесконечно малых функций и оформлять в виде таблицы. При вычислении пределов одни бесконечно малые можно заменять на другие.

Пример 4-5. Вычисление предела функции заменой эквивалентных бесконечно малых. Вычислим предел:

$$\lim_{x \to 0} \frac{1 - \cos x}{\arctan x^2}$$

Для вычисления воспользуемся эквивалентностью бесконечно малых и заменим их на бесконечно малые, с которыми проще проводить вычисления:

$$\lim_{x \to 0} \frac{1 - \cos x}{\arctan x^2} = \lim_{x \to 0} \frac{x^2}{x^2} = \frac{1}{2}$$

4-3 Теоремы о пределах

Теоремы о бесконечно малых дают возможность довольно легко доказать теоремы о пределах функций, которые, в свою очередь, упрощают вычисление пределов функций.

Единственность предела функции

Теорема 4-8 (единственность предела функции). Функция не может иметь в одной точке два различных предела.

Доказательство. Действительно, пусть одновременно:

$$\lim_{x \to a} f(x) = A$$

$$\lim_{x \to a} f(x) = B$$

Тогда представим функцию, согласно теореме, доказанной выше, в виде суммы предела и бесконечно малой:

$$f(x) = A + \alpha(x)$$

$$f(x) = B + \beta(x)$$

Отсюда получаем:

$$A + \alpha(x) = B + \beta(x)$$

$$A - B = \beta(x) - \alpha(x)$$

Выражение A-B является постоянной величиной, а справа находится разница бесконечно малых, которая является бесконечно малой. Это означает, что постоянная равна нулю:

$$A - B = \beta(x) - \alpha(x) = 0$$
$$A = B$$

Нами доказана единственность предела функции.

Предел суммы функций

В этой и последующих теоремах мы полагаем в качестве условия, что имеются две функции f(x) и g(x), которые имеют пределы при $x \to a$:

$$\lim_{x \to a} f(x) = A$$

$$\lim_{x \to a} g(x) = B$$

Теорема 4-9 (предел суммы двух функции). Предел суммы двух функций равен сумме пределов:

$$\lim_{x \to a} (f(x) + g(x)) = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$$

Доказательство. Представим функции в окрестности точки x=a в виде суммы предела и бесконечно малой:

$$f(x) = A + \alpha(x)$$

$$g(x) = B + \beta(x)$$

Тогда

$$f(x) + g(x) = (A + B) + \alpha(x) + \beta(x)$$

В последнем выражении сумма бесконечно малых есть бесконечно малая. Это означает, что сумма функций имеет пределом сумму A+B.

Предел произведения и частного

Теорема 4-10 (предел произведения двух функции). Предел произведения двух функций равен произведению пределов:

$$\lim_{x \to a} (f(x) \cdot g(x)) = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x)$$

Следствие. Постоянный множитель можно выносить за знак предела:

$$\lim_{x \to a} (C \cdot f(x)) = C \cdot \lim_{x \to a} f(x)$$

Теорема 4-11 (предел частного двух функции). Предел частного двух функций равен частному пределов, если предел делителя не равен нулю:

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}$$

В случае, если верхний предел не равен нулю, то имеются очевидные соотношения (при C > o):

$$\frac{C}{+0} = +\infty$$

$$\frac{C}{-0} = -\infty$$

Теорема 4-12 (теорема о двух милиционерах для функции). Если в некоторой окрестности точки x=a функция f(x) заключена между двумя другими функциями g(x) и h(x), имеющими один тот же предел A при $x \rightarrow a$:

$$g(x) \le f(x) \le h(x)$$

$$\lim_{x \to a} g(x) = \lim_{x \to a} h(x) = A$$

то функция f(x) имеет тот же предел:

$$\lim_{x \to a} f(x) = A$$

4-4 Замечательные пределы

Первый замечательный предел

Теорема 4-13 (первый замечательный предел). Справедливо равенство:

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

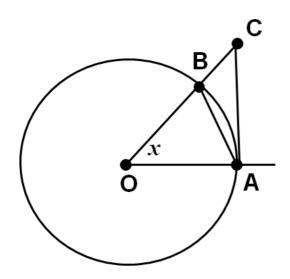


Рисунок 4-2. Геометрическое доказательство первого замечательного предела.

Доказательство. Проведем геометрическое доказательство, основанное на очевидном соотношении между тремя площадями:

$$S_{\Delta AOB} < S_{\text{сектор }AOB} < S_{\Delta AOC}$$

Нами выбран круг единичного радиуса и угол x, выраженный в радианах, в интервале от о до $\pi/2$. Найдем три указанные площади и подставим в имеющееся неравенство:

$$\frac{1}{2}OA \cdot OB \cdot \sin x < \frac{1}{2}R^2 \cdot x < \frac{1}{2}OA \cdot AC$$

Преобразовываем:

$$\frac{1}{2}R^2 \cdot \sin x < \frac{1}{2}R^2 \cdot x < \frac{1}{2}R^2 \cdot \operatorname{tg} x$$

Сокращаем:

$$\sin x < x < \tan x$$

Затем делим на $\sin x$:

$$1 < \frac{x}{\sin x} < \frac{1}{\cos x}$$

$$\cos x < \frac{\sin x}{x} < 1$$

Так как предел косинуса при $x \to 0$ равен 1, то интересующий нас предел оказался заключен между двумя другими, имеющими одинаковый предел. Тогда по теореме о двух милиционерах доказано, что

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

Пример 4-6 (вычисление предела с использованием первого замечательного предела). Вычислить предел:

$$\lim_{x\to 0} \frac{\sin 2x}{\sin 5x}$$

Воспользуемся первым замечательным пределом:

$$\lim_{x \to 0} \frac{\sin 2x}{\sin 5x} = \lim_{x \to 0} \frac{\frac{2\sin 2x}{2x}}{\frac{\sin 5x}{5x}} = \frac{2}{5}$$

Второй замечательный предел

Теорема 4-13 (второй замечательный предел). Число e является пределом следующей последовательности:

$$\lim_{n\to\infty} \left(1 + \frac{1}{n}\right)^n = e$$

Число е, называемое также числом Эйлера, играет важную роль в математическом анализе. Оно примерно равно 2,718.. Логарифмы по основанию е называются натуральными и обозначаются $\ln x$, график функции $y = e^x$ получил название экспоненты.

Для функций верны следующие утверждения:

$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e$$

$$\lim_{x \to 0} (1+x)^{\frac{1}{x}} = e$$

Пример 4-7 (вычисление предела с использованием второго замечательного предела). Вычисляем предел:

$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^{2x} = \left(\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x \right)^2 = e$$

Термины

Предел функции
Бесконечно большая величина
Бесконечно малая величина
Односторонний предел
Порядок малости

Limit of Function Infinite Quantity Infinitesimal One-Sided Limit Infinitesimal Order

Формулы и обозначения

$$\lim_{x \to a} f(x) = A$$
 Предел функции в точке
$$A - \varepsilon < a_n < A + \varepsilon$$
 ε -окрестность точки A Эквивалентность б.м.
$$f(x) = A + \alpha(x)$$
 Представление функции
$$\lim_{x \to a} (f(x) + g(x)) = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$$
 Предел суммы
$$\lim_{x \to a} (f(x) \cdot g(x)) = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x)$$
 Предел произведения
$$\lim_{x \to a} (C \cdot f(x)) = C \cdot \lim_{x \to a} f(x)$$
 Внесение константы
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}$$
 Предел частного
$$\lim_{x \to a} \frac{\sin x}{x} = 1$$
 Первый замечательный предел
$$\lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x = e$$
 Второй замечательный предел

Контрольные вопросы

- 1. Что называется пределом функции в бесконечности?
- 2. Приведите пример предела функции в точке.
- 3. В чем состоит геометрический смысл предела функции в точке? В бесконечности?
- 4. Что такое предел функции справа? Приведите пример.
- 5. Дайте определение бесконечно малой величины.
- 6. Докажите, что произведение бесконечно малой на постоянную величину есть бесконечно малая величина.
- 7. Как связаны между собой бесконечно малые и бесконечно большие величины?
- 8. Какие бесконечно малые величины называются эквивалентными? Для чего необходима таблица эквивалентности?
- 9. Перечислите основные теоремы о пределах. Как они используются?
- 10. Докажите первый замечательный предел. Какая теорема о пределах функций использована в доказательстве?